00:00 - 00:01

嘿超奇趣

00:01 - 00:01

这是小超

00:01 - 00:04

这是韦伯望远镜拍摄的遥远星系

00:04 - 00:06

其中包含263个星系团

00:06 - 00:09

从图中可以看到星系的旋转方向

00:09 - 00:12

其中顺时针也就是与银河系相反的

00:12 - 00:13

标记为蓝色

00:13 - 00:16

而逆时针与银河系相同的标记为红色

00:16 - 00:19

我们将全部的这263个星系都这样标记

00:19 - 00:22

发现蓝色圈起来的占了3/5

00:22 - 00:24

而红色占了2/5

00:24 - 00:27

也就是60%比40%

00:27 - 00:29

这就让人非常的震惊

00:29 - 00:29

因为

00:29 - 00:32

星系是由原始的宇宙尘埃聚集而成

00:32 - 00:35

而现在宇宙学的基础大爆炸模型认为

00:35 - 00:38

膨胀的宇宙并没有方向性

00:38 - 00:40

那么宇宙中的物质聚集成星系

00:40 - 00:42

也不应该具有特定的旋转方向

00:43 - 00:43

所以

00:43 - 00:47

星系不同的旋转方向比例应该是50:50

00:47 - 00:49

而不是60%比40%

00:49 - 00:52

这与广为接受的宇宙学基本原理

00:52 - 00:55

相矛盾目前的这个宇宙学模型表明

00:55 - 00:57

各个方向它是均匀扩张

00:57 - 00:59

被称为各项同性

00:59 - 01:01

就像气球充气一样

01:01 - 01:04

但是人们不认为宇宙本身是在旋转

01:04 - 01:07

一个可能的解释就是称为光疲惫理论

01:07 - 01:09

提出光子在穿越空间时

01:09 - 01:11

可能会损失能量

01:11 - 01:13

从而导致看似膨胀的一种运动

01:13 - 01:14

科学家还提出

01:14 - 01:15

银河系

01:15 - 01:17

它自身的旋转也可能导致这一现象

01:17 - 01:18

但是一般来说

01:18 - 01:20

它不会对韦伯望远镜的观测

01:20 - 01:22

产生太大的影响

01:22 - 01:23

而在韦伯望远镜之前

01:23 - 01:24

有个哈勃望远镜

01:24 - 01:26

通过观测这些深空宇宙

01:26 - 01:27

星系的这个红移

01:27 - 01:29

测出了宇宙大爆炸

01:29 - 01:32

它的膨胀系数也被称为哈勃常数

01:32 - 01:34

比如说通过微波背景辐射

01:34 - 01:35

测量的这个哈勃常数

01:35 - 01:37

它的数值与通过星系

01:37 - 01:38

的红移测量的方法

01:38 - 01:40

得出的结果是不一样的

01:40 - 01:42

这个被称为哈勃张力的这个问题

01:43 - 01:44

这个问题非常的棘手

01:44 - 01:46

是宇宙学家面临的一大问题

01:46 - 01:48

然而一项研究表明

01:48 - 01:50

旋转的这个宇宙可以解决这些差异

01:51 - 01:54

研究最近发表在皇家天文学会月刊上

01:54 - 01:55

旋转模型

01:55 - 01:58

并没有违背任何已知的这个物理定律

01:58 - 02:01

他表明宇宙是每5,000亿年旋转一周

02:01 - 02:03

这个速度非常的慢

02:03 - 02:03

难以探测

02:03 - 02:06

我们要知道宇宙到现在也只有137亿年

02:06 - 02:07

但是

02:07 - 02:10

他足够影响空间随着时间膨胀的方式

02:10 - 02:11

这个研究中

02:11 - 02:12

夏威夷大学的研究人员

02:12 - 02:14

对宇宙进行了数学建模

02:14 - 02:17

首先他遵循这个宇宙学标准模型

02:17 - 02:19

然后添加了少量的这个旋转

02:19 - 02:21

带有旋转的这个宇宙学模型

02:21 - 02:23

果然解决了这个哈勃常数的悖论

02:23 - 02:26

并且与当前的天文学观测并没有冲突

02:26 - 02:26

提出这个理论后

02:26 - 02:27

下一步

02:27 - 02:30

就是将它转换成完整的计算机模型

02:30 - 02:31

并且找到方法验证它

02:32 - 02:34

如果这些星系的偏向确实存在

02:34 - 02:34

那么

02:34 - 02:37

可能暗示我们宇宙确实有一个母黑洞

02:37 - 02:39

产生的这个旋转的倾向

02:39 - 02:40

让我来解释一下

02:40 - 02:41

黑洞宇宙学

02:41 - 02:43

认为我们所在的这个整个宇宙

02:43 - 02:44

可能是一个更大的母宇宙

02:44 - 02:46

中黑洞的内部空间

02:46 - 02:48

黑洞事件视界

02:48 - 02:50

物质光和无法逃出的这个边界

02:50 - 02:53

也可能是我们宇宙的可观测边界

02:53 - 02:55

每一个黑洞都可能有一个子宇宙

02:55 - 02:57

这些宇宙通过虫洞之间

02:57 - 02:59

与母宇宙相连接

02:59 - 03:01

由于这个事件视界的单向性

03:01 - 03:02

也就是信息无法返回

03:02 - 03:05

子宇宙对于母宇宙而言是不可观测的

03:05 - 03:07

而当物质被压缩到极限时

03:07 - 03:10

会因为自旋与时空扭转的这个趋势

03:10 - 03:12

耦合形成一个无穷小的奇点

03:12 - 03:15

代替奇点的是一个弹簧反弹效应

03:15 - 03:17

形成一个大密度状态的爆炸

03:17 - 03:19

也就是我们称为宇宙大爆炸

03:19 - 03:22

子宇宙会继承母宇宙黑洞的旋转方向

03:22 - 03:23

这种旋转

03:23 - 03:25

也可能赋予宇宙一个偏向的旋转轴

03:25 - 03:26

理论上来说

03:26 - 03:27

我们的宇宙

03:27 - 03:29

看起来就像是一个白洞的另一端

03:29 - 03:31

信息没有办法进入

03:31 - 03:32

只能喷出

03:32 - 03:33

也就是大爆炸

03:33 - 03:34

爆发出来的这些物质

03:34 - 03:35

黑洞加白洞

03:35 - 03:37

构成了一个爱因斯坦罗森桥

03:37 - 03:38

也就是虫洞

03:38 - 03:39

总结来说

03:39 - 03:41

如果我们的宇宙确实是旋转的

03:41 - 03:43

则根据黑洞宇宙学理论

03:43 - 03:44

也就是我们的宇宙

03:44 - 03:47

可能诞生于另一个宇宙中旋转的黑洞

03:47 - 03:50

其中旋转的时空替代了这个奇点

03:50 - 03:52

引发了一个大反弹式的大爆炸

03:52 - 03:54

这个大爆炸也就是我们现在宇宙

03:54 - 03:55

继承了母宇宙

03:55 - 03:57

也就是上一个宇宙的旋转结构

03:57 - 03:59

这个观点也并不是最近才发现

03:59 - 04:00

早在1946年

04:00 - 04:02

著名的科普作家伽莫夫

04:02 - 04:04

就在自然杂志上提出

04:04 - 04:05

而在1949年

04:05 - 04:07

数学大师库尔特戈德尔(侯世达

04:07 - 04:08

正式给这一理论

04:08 - 04:10

提出了严谨的数学模型

04:10 - 04:12

它只包含一个负宇宙常数

04:12 - 04:13

依靠这种负压

04:13 - 04:15

来抵消旋转带来的离心力

04:15 - 04:16

使宇宙保持稳定

04:16 - 04:19

但这并不影响他提出的最核心的结论

04:19 - 04:20

广义相对论

04:20 - 04:21

允许时间旅行

04:21 - 04:23

跟爱因斯坦的完全相反

04:23 - 04:25

从哥德尔的宇宙学开始

04:25 - 04:28

科学家们提出了各种时间旅行的假想

04:28 - 04:29

虫洞曲率引擎

04:29 - 04:32

围绕无限长圆柱体的闭合时间路径

04:32 - 04:34

不过大多数需要奇特的物质

04:34 - 04:35

比如负物质负能量

04:35 - 04:36

相比之下

04:36 - 04:38

哥德尔模型反而是最保守的

04:38 - 04:39

因为

04:39 - 04:41

它不需要突破已知的任何物理规律

04:41 - 04:43

只需要宇宙是旋转的

04:43 - 04:44

在这个宇宙中

04:44 - 04:45

每一个观察者

04:45 - 04:47

都会认为自己是宇宙旋转的中心

04:47 - 04:49

无论你身处何处

04:49 - 04:51

整个宇宙似乎都在围着你旋转

04:51 - 04:52

听起来有点荒诞

04:52 - 04:53

更奇妙的是

04:53 - 04:55

这种旋转不仅是物质的旋转

04:55 - 04:57

更是时空本身的旋转

04:57 - 04:59

这会让光线的路径发生弯曲

04:59 - 05:01

甚至在某些极端的情况下反向折返

05:02 - 05:04

看到你自己过去的影像

05:04 - 05:07

如果你驾驶飞船穿越整个宇宙

05:07 - 05:08

对于时间的旋转

05:08 - 05:09

你最终会绕到出发点

05:09 - 05:12

但抵达的时间却早于出发的时间

05:12 - 05:12

换句话说

05:12 - 05:14

你就能回到了过去

05:14 - 05:16

总之如果旋转的宇宙真的成立

05:16 - 05:17

那我们对于宇宙的认知

05:17 - 05:20

现在的宇宙学标准模型都将被颠覆

05:20 - 05:22

最后一如既往的感谢收看

Unraveling the Cosmic Mystery: The Surprising Directionality of Galaxies

In an astounding revelation from the James Webb Space Telescope, astronomers have observed that 60% of galaxies in a distant cluster exhibit a clockwise rotation, opposite to our Milky Way's direction, while only 40% rotate counterclockwise. This unexpected finding raises questions about the fundamental principles of cosmology, which traditionally suggests a uniform, isotropic universe with no preferential rotation. Could these patterns indicate a larger, rotating cosmos? Let’s dive into the implications of this discovery.

The Unexpected Findings of the James Webb Space Telescope

Recently, the James Webb Space Telescope captured a fascinating view of a remote galaxy cluster comprising 263 galaxies. The analysis of the rotation directions revealed that 60% of these galaxies are rotating clockwise (indicated in blue), while only 40% rotate counterclockwise (marked in red). This polarization in rotation contrasts with our current understanding, which posits that galaxies should have a roughly equal 50:50 distribution in their rotation directions due to the isotropy of the universe at large.

The Cosmological Conflict: Rotation vs. Expansion

This surprising discovery contradicts the widely accepted cosmological principles based on the Big Bang theory, where expansion is expected to be uniform in all directions. The universe is theorized to expand like a balloon, with no inherent directionality imparted to the galaxies formed from primordial cosmic dust.

Possible Explanations for the Rotational Bias

Scientists have proposed several potential explanations for this uneven distribution. One theory is known as photon fatigue, suggesting that photons might lose energy as they traverse the vastness of space, creating an illusion of rotational motion. Additionally, the Milky Way's own rotation could theoretically influence the directionality observed by the James Webb Telescope, although scientists largely agree that this should not significantly alter the findings.

The Hubble Constant Dilemma: A Cosmic Conundrum

Adding to the complexity, the Hubble Space Telescope previously detected discrepancies in the Hubble constant— a measure of the universe's expansion rate—determined through different observational methods. The latest research from the Royal Astronomical Society proposes a rotating universe model that remains consistent with known physics, which could potentially solve the Hubble tension.

This model suggests that the universe rotates every 500 billion years, a slow and hard-to-detect speed, yet sufficient to influence the expansion dynamics. Researchers from the University of Hawaii have modeled this idea mathematically and are pursuing ways to validate it through computational models.

The Fascinating Concept of Black Hole Cosmology

If our universe does experience rotational tendencies, this could imply a relationship with larger cosmic structures, such as a mother universe from which ours emerged. In black hole cosmology, every black hole may harbor its own sub-universe, potentially connected through wormholes to a mother universe. Each of these child universes might inherit the rotational characteristics of their parent black holes.

In this scenario, the observable universe would be akin to a white hole, emitting matter and energy from the Big Bang while remaining inaccessible for information return, reflected by the event horizon of the black hole.

The Legacy of Theoretical Foundations

The idea that our universe spins around a central axis is not new. In 1946, the renowned science writer George Gamow first proposed this notion, and by 1949, the mathematician Kurt Gödel had established a rigorous mathematical model based on the premise of a rotating universe. He suggested that such a framework could allow for time travel, presenting a radically different perspective on time and space, defying conventional theories proposed by Einstein.

Contemplating the Implications

If the rotating universe theory holds true, it would challenge our current cosmological models. Observers scattered throughout this universe would perceive themselves as the central axis around which all celestial bodies turn. This notion raises profound questions about the nature of space, time, and the very fabric of existence.

More intriguingly, such a rotation could alter light trajectories, enabling scenarios where one could potentially witness echoes of their past, creating a thrilling vision of time travel.

Conclusion: A Journey into the Unknown

As we continue our exploration of these cosmic phenomena, the implications of a rotating universe could redefine our understanding of cosmology. The mysteries behind galaxy rotations may intertwine with the fundamental truths about our universe's birth, structure, and eventual fate. The journey to uncover these truths promises both challenges and revelations for scientists and space enthusiasts alike.

Thank you for joining us on this exploration of the universe's grand design. The more we probe into space's depths, the more profound mysteries await. Are we on the brink of a revolutionary understanding of our cosmos? Only time will tell!