00:00 - 00:01

嘿超奇趣

00:01 - 00:01

这是小超

00:01 - 00:04

这是韦伯望远镜拍摄的遥远星系

00:04 - 00:06

其中包含263个星系团

00:06 - 00:09

从图中可以看到星系的旋转方向

00:09 - 00:12

其中顺时针也就是与银河系相反的

00:12 - 00:13

标记为蓝色

00:13 - 00:16

而逆时针与银河系相同的标记为红色

00:16 - 00:19

我们将全部的这263个星系都这样标记

00:19 - 00:22

发现蓝色圈起来的占了3/5

00:22 - 00:24

而红色占了2/5

00:24 - 00:27

也就是60%比40%

00:27 - 00:29

这就让人非常的震惊

00:29 - 00:29

因为

00:29 - 00:32

星系是由原始的宇宙尘埃聚集而成

00:32 - 00:35

而现在宇宙学的基础大爆炸模型认为

00:35 - 00:38

膨胀的宇宙并没有方向性

00:38 - 00:40

那么宇宙中的物质聚集成星系

00:40 - 00:42

也不应该具有特定的旋转方向

00:43 - 00:43

所以

00:43 - 00:47

星系不同的旋转方向比例应该是50:50

00:47 - 00:49

而不是60%比40%

00:49 - 00:52

这与广为接受的宇宙学基本原理

00:52 - 00:55

相矛盾目前的这个宇宙学模型表明

00:55 - 00:57

各个方向它是均匀扩张

00:57 - 00:59

被称为各项同性

00:59 - 01:01

就像气球充气一样

01:01 - 01:04

但是人们不认为宇宙本身是在旋转

01:04 - 01:07

一个可能的解释就是称为光疲惫理论

01:07 - 01:09

提出光子在穿越空间时

01:09 - 01:11

可能会损失能量

01:11 - 01:13

从而导致看似膨胀的一种运动

01:13 - 01:14

科学家还提出

01:14 - 01:15

银河系

01:15 - 01:17

它自身的旋转也可能导致这一现象

01:17 - 01:18

但是一般来说

01:18 - 01:20

它不会对韦伯望远镜的观测

01:20 - 01:22

产生太大的影响

01:22 - 01:23

而在韦伯望远镜之前

01:23 - 01:24

有个哈勃望远镜

01:24 - 01:26

通过观测这些深空宇宙

01:26 - 01:27

星系的这个红移

01:27 - 01:29

测出了宇宙大爆炸

01:29 - 01:32

它的膨胀系数也被称为哈勃常数

01:32 - 01:34

比如说通过微波背景辐射

01:34 - 01:35

测量的这个哈勃常数

01:35 - 01:37

它的数值与通过星系

01:37 - 01:38

的红移测量的方法

01:38 - 01:40

得出的结果是不一样的

01:40 - 01:42

这个被称为哈勃张力的这个问题

01:43 - 01:44

这个问题非常的棘手

01:44 - 01:46

是宇宙学家面临的一大问题

01:46 - 01:48

然而一项研究表明

01:48 - 01:50

旋转的这个宇宙可以解决这些差异

01:51 - 01:54

研究最近发表在皇家天文学会月刊上

01:54 - 01:55

旋转模型

01:55 - 01:58

并没有违背任何已知的这个物理定律

01:58 - 02:01

他表明宇宙是每5,000亿年旋转一周

02:01 - 02:03

这个速度非常的慢

02:03 - 02:03

难以探测

02:03 - 02:06

我们要知道宇宙到现在也只有137亿年

02:06 - 02:07

但是

02:07 - 02:10

他足够影响空间随着时间膨胀的方式

02:10 - 02:11

这个研究中

02:11 - 02:12

夏威夷大学的研究人员

02:12 - 02:14

对宇宙进行了数学建模

02:14 - 02:17

首先他遵循这个宇宙学标准模型

02:17 - 02:19

然后添加了少量的这个旋转

02:19 - 02:21

带有旋转的这个宇宙学模型

02:21 - 02:23

果然解决了这个哈勃常数的悖论

02:23 - 02:26

并且与当前的天文学观测并没有冲突

02:26 - 02:26

提出这个理论后

02:26 - 02:27

下一步

02:27 - 02:30

就是将它转换成完整的计算机模型

02:30 - 02:31

并且找到方法验证它

02:32 - 02:34

如果这些星系的偏向确实存在

02:34 - 02:34

那么

02:34 - 02:37

可能暗示我们宇宙确实有一个母黑洞

02:37 - 02:39

产生的这个旋转的倾向

02:39 - 02:40

让我来解释一下

02:40 - 02:41

黑洞宇宙学

02:41 - 02:43

认为我们所在的这个整个宇宙

02:43 - 02:44

可能是一个更大的母宇宙

02:44 - 02:46

中黑洞的内部空间

02:46 - 02:48

黑洞事件视界

02:48 - 02:50

物质光和无法逃出的这个边界

02:50 - 02:53

也可能是我们宇宙的可观测边界

02:53 - 02:55

每一个黑洞都可能有一个子宇宙

02:55 - 02:57

这些宇宙通过虫洞之间

02:57 - 02:59

与母宇宙相连接

02:59 - 03:01

由于这个事件视界的单向性

03:01 - 03:02

也就是信息无法返回

03:02 - 03:05

子宇宙对于母宇宙而言是不可观测的

03:05 - 03:07

而当物质被压缩到极限时

03:07 - 03:10

会因为自旋与时空扭转的这个趋势

03:10 - 03:12

耦合形成一个无穷小的奇点

03:12 - 03:15

代替奇点的是一个弹簧反弹效应

03:15 - 03:17

形成一个大密度状态的爆炸

03:17 - 03:19

也就是我们称为宇宙大爆炸

03:19 - 03:22

子宇宙会继承母宇宙黑洞的旋转方向

03:22 - 03:23

这种旋转

03:23 - 03:25

也可能赋予宇宙一个偏向的旋转轴

03:25 - 03:26

理论上来说

03:26 - 03:27

我们的宇宙

03:27 - 03:29

看起来就像是一个白洞的另一端

03:29 - 03:31

信息没有办法进入

03:31 - 03:32

只能喷出

03:32 - 03:33

也就是大爆炸

03:33 - 03:34

爆发出来的这些物质

03:34 - 03:35

黑洞加白洞

03:35 - 03:37

构成了一个爱因斯坦罗森桥

03:37 - 03:38

也就是虫洞

03:38 - 03:39

总结来说

03:39 - 03:41

如果我们的宇宙确实是旋转的

03:41 - 03:43

则根据黑洞宇宙学理论

03:43 - 03:44

也就是我们的宇宙

03:44 - 03:47

可能诞生于另一个宇宙中旋转的黑洞

03:47 - 03:50

其中旋转的时空替代了这个奇点

03:50 - 03:52

引发了一个大反弹式的大爆炸

03:52 - 03:54

这个大爆炸也就是我们现在宇宙

03:54 - 03:55

继承了母宇宙

03:55 - 03:57

也就是上一个宇宙的旋转结构

03:57 - 03:59

这个观点也并不是最近才发现

03:59 - 04:00

早在1946年

04:00 - 04:02

著名的科普作家伽莫夫

04:02 - 04:04

就在自然杂志上提出

04:04 - 04:05

而在1949年

04:05 - 04:07

数学大师库尔特戈德尔(侯世达

04:07 - 04:08

正式给这一理论

04:08 - 04:10

提出了严谨的数学模型

04:10 - 04:12

它只包含一个负宇宙常数

04:12 - 04:13

依靠这种负压

04:13 - 04:15

来抵消旋转带来的离心力

04:15 - 04:16

使宇宙保持稳定

04:16 - 04:19

但这并不影响他提出的最核心的结论

04:19 - 04:20

广义相对论

04:20 - 04:21

允许时间旅行

04:21 - 04:23

跟爱因斯坦的完全相反

04:23 - 04:25

从哥德尔的宇宙学开始

04:25 - 04:28

科学家们提出了各种时间旅行的假想

04:28 - 04:29

虫洞曲率引擎

04:29 - 04:32

围绕无限长圆柱体的闭合时间路径

04:32 - 04:34

不过大多数需要奇特的物质

04:34 - 04:35

比如负物质负能量

04:35 - 04:36

相比之下

04:36 - 04:38

哥德尔模型反而是最保守的

04:38 - 04:39

因为

04:39 - 04:41

它不需要突破已知的任何物理规律

04:41 - 04:43

只需要宇宙是旋转的

04:43 - 04:44

在这个宇宙中

04:44 - 04:45

每一个观察者

04:45 - 04:47

都会认为自己是宇宙旋转的中心

04:47 - 04:49

无论你身处何处

04:49 - 04:51

整个宇宙似乎都在围着你旋转

04:51 - 04:52

听起来有点荒诞

04:52 - 04:53

更奇妙的是

04:53 - 04:55

这种旋转不仅是物质的旋转

04:55 - 04:57

更是时空本身的旋转

04:57 - 04:59

这会让光线的路径发生弯曲

04:59 - 05:01

甚至在某些极端的情况下反向折返

05:02 - 05:04

看到你自己过去的影像

05:04 - 05:07

如果你驾驶飞船穿越整个宇宙

05:07 - 05:08

对于时间的旋转

05:08 - 05:09

你最终会绕到出发点

05:09 - 05:12

但抵达的时间却早于出发的时间

05:12 - 05:12

换句话说

05:12 - 05:14

你就能回到了过去

05:14 - 05:16

总之如果旋转的宇宙真的成立

05:16 - 05:17

那我们对于宇宙的认知

05:17 - 05:20

现在的宇宙学标准模型都将被颠覆

05:20 - 05:22

最后一如既往的感谢收看

Is the Universe Rotating? Stunning Discoveries from the James Webb Telescope

In a groundbreaking revelation based on observations from the James Webb Telescope, a surprising phenomenon concerning the rotation directions of distant galaxies has emerged. The results indicate that 60% of surveyed galaxies rotate in one direction while only 40% spin in the opposite. This violates the widely accepted cosmological principles that suggest uniform expansion of the universe. This article will explore these findings, their implications for cosmology, and the new theories emerging from this research, centered around the concept of a rotating universe.


The Unanticipated Findings of Galactic Rotation

Recent observations made by the James Webb Telescope have unveiled a startling asymmetry in galaxy rotation. Among the 263 galaxy clusters analyzed, the data reveals that 60% of these galaxies rotate clockwise (marked in blue, opposite to our Milky Way's rotation), while 40% rotate counterclockwise (marked in red). This revelation challenges the classic Big Bang model which posits that, due to the universe's isotropic expansion like a balloon inflating, there should be no preferred rotation direction among galaxies, implying a balanced 50:50 ratio.

Implications of the Findings

The revelation that galaxies exhibit preferential rotation raises significant questions. If the standard cosmological model asserts that the universe expands uniformly in all directions, why do we see this discrepancy in galactic spin? The research hints at the potential existence of underlying forces or conditions influencing galactic dynamics, contradicting established cosmological theories.

Light Fatigue Theory: Possible Explanations

One proposed explanation for this uneven distribution is the 'light fatigue theory', which suggests that photons may lose energy while traveling through space, creating the illusion of expansion. Another theory posits that our galaxy's own rotation could be impacting these observations, although scientists believe this would have a negligible effect on the Webb Telescope's data.

Hubble's Legacy and the Tension of Hubble Constant

Before the Webb, the Hubble Telescope contributed significantly to our understanding of cosmic expansion, offering insights into the Hubble constant. Discrepancies between measurements derived from cosmic microwave background radiation and redshift of galaxies have created what is known as the Hubble tension, presenting a complex challenge for cosmologists. The idea of a rotating universe may hold the key to reconciling these differences.

The Rotation Model: A New Approach to Cosmology

Recent studies, published in the Monthly Notices of the Royal Astronomical Society, propose a new cosmological model with rotation, which intriguingly does not violate established physical laws. This new model posits that the universe makes a complete rotation approximately every 500 billion years—a time span far exceeding the universe's current age of about 13.7 billion years—and provides a slow but profound effect on the universe's expansion.

Mathematical Modeling and Future Exploration

Researchers from the University of Hawaii are furthering this theory by constructing mathematical models that incorporate a tiny rotational aspect to the standard cosmological model. Preliminary findings suggest that this rotating universe model could solve the Hubble constant discrepancy and align with existing astronomical observations.

Black Hole Cosmology: Considerations of a Parent Universe

One fascinating perspective arising from this discussion is rooted in black hole cosmology, proposing that our universe itself might be nested within a grander mother universe. Here, each black hole represents a potential universe, connected by bridges of spacetime, or wormholes, thereby manifesting a profound relationship between rotation and structure in the cosmos.

The Nature of Cosmic Singularity and Explosive Beginnings

In black hole cosmology, a critical transition occurs when mass is compressed to its limit, generating a singularity—a point of infinite density. Thereafter, the theory suggests this singularity undergoes a 'bounce effect', leading to what we now understand as the big bang. The possibility that our universe's rotation stems from a parent universe's black hole carries profound implications for our understanding of cosmic origins and evolution.

Gödel's Universe: Timeless Travel and Cosmic Spin

Such notions are not entirely new; in 1946, the renowned writer George Gamow introduced ideas about cosmological structures, later formalized in 1949 by mathematician Kurt Gödel. His models incorporate rotation and highlight intriguing concepts such as time travel within a rotating universe, paving the way for modern explorations of gravitational effects on spacetime.

Envisioning a Rotating Universe

In this rotating universe scenario, every observer perceives themselves as the center of rotation—an entrancing notion where time and space converge in unexpected ways. Under extreme conditions, light paths could curve back upon themselves, allowing for glimpses into the past—a tantalizing idea that stirs the imagination.

What Lies Ahead

As research progresses, the implications of a rotating universe could fundamentally alter our current cosmological understanding. If validated, these concepts will challenge everything we think we know about the cosmos, ushering in a new era of exploration in modern astronomy.

The journey to comprehend the universe is as magnificent as the cosmos itself. So, as we digest these insights from the James Webb Telescope, we are reminded just how much there is yet to discover about the nature of reality, space, and time.


Thank you for taking this cosmic exploration with us! The universe still holds many secrets—and we are just beginning to unravel them.